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Abstract

This work introduces a method for instrumenting applications, producing execution traces, and visualizing multiple trace
instances to identify performance features. The approach provides information on the execution behavior of each process within
a parallel application and allows differences across processes to be readily identified. Traces events are directly related to the
source code and call-chain that produced them. This allows the identification of the causes of events to be easily obtained. The
approach is particularly suited to aid in the understanding of the achieved performance from an application centric viewpoint.
In particular, it can be used to assist in the formation of analytical performance models which can be a time-consuming task for
large complex applications. The approach is one of human-effort reduction: focus the interest of the performance specialist on
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performance critical code regions rather than automating the performance model formulation process completely. A s
implementation analyses trace files from different runs of an application to determine the relative performance char
for critical regions of code and communication functions.
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1. Introduction

It is generally accepted that the peak-performance
of high performance systems is the result of a complex
interplay between the hardware architecture, the com-
munication system and the applied workload. Knowl-
edge of the processor design, memory hierarchy, inter-
processor and network system, and workload arrange-
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ment is necessary to understand the achievable p
mance.

As high-end computing facilities increase in sc
and complexity, it is essential to consider the sys
performance throughout an architecture’s life cy
starting at the design stage where no system is ava
for measurement, through comparison of systems
procurement, to implementation, installation and
ification, and finally to examine the effects of sys
updates over time.

A key approach that can be used at each sta
the life-cycle is to utilize detailed models that prov
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information on the expected performance of a work-
load, given a particular architectural configuration. De-
pending on the complexity of the model, an expectation
of the achievable performance of the workload can be
obtained with reasonable fidelity.

The accuracy of a model, and hence, its effective-
ness lie in its ability to capture an application’s perfor-
mance characteristics. It is considered advantageous to
parameterize a model in terms of system configuration
and calculation behavior, as this allows for the explo-
ration of the performance space without being specific
to a particular ‘performance point’. Evaluation of antic-
ipated scenarios such as the scaling effect of increasing
the processor count, altering the workload size, or the
impact of modifying the communication strategy can
then be explored.

Performance models are widely used: from large-
scale, tightly coupled systems through to dynamic and
distributed Grid-based systems. For instance, perfor-
mance modeling was used to: validate performance
during the installation of ASCI Q at Los Alamos Na-
tional Laboratory (LANL)[1] which ultimately lead to
the system optimization resulting in a factor of two
performance improvement[2]; compare the perfor-
mance of large-scale systems such as the Earth Sim-
ulator [3]; and has been used in the procurement of
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model a simpler task using ‘black-box’ techniques in
which individual performance aspects are observed but
not necessarily understood. Examples include model-
ing the scaling behavior of basic-block performance[6]
and modeling the memory behavior of basic-blocks and
extrapolating to other systems[7]. These approaches
tend to be specific to a particular processor configura-
tion and/or application problem size.

In this work, we consider an approach that aims
to simplify the process of generating a performance
model, but not to automate it entirely. The purpose is not
to simplify the resultant performance model, or detract
from the skill-set required by the modeler, but rather re-
move unnecessary steps during formulation. While the
answer to this question lies, in part, with the experience
of the performance-modeler; we believe that tools can
be developed (or adapted) to help locate and focus on
the performance critical regions. Such regions are typ-
ically those whose execution behavior changes when
the system configuration or application input-data is
varied. Should a region of code not change (in the per-
formance sense) to such configuration and input vari-
ations, it may be possible to approximate the behavior
by a single timing for a given architecture. An essential
part of the performance modeler’s skill is distinguish-
ing between the elements that require parameterization
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many systems including ASCI purple (expected to
a 100Tflop machine). Performance models are als
tensively applied in ‘Grid’ environments to consid
service-orientated metrics in the provision of reso
management services[4], and in the mapping of fina
cial applications to available resources[5].

It is, however, generally acknowledged that the
mation of a performance model is a complex tas
typically involves a thorough code analysis, inspec
of important data structures, and analysis of profile
trace data. It can, therefore, be time-consuming to
erate a detailed model given the large size of m
scientific applications and the relative complexitie
advanced data structures and highly optimized c
munication strategies. Historically, much of this w
has been performed “by hand” using profilers and
ing libraries typically designed for fault analysis.
applications become more complex, the ability to
cilitate the modeling process has become increas
desirable.

Several semi-automated approaches have bee
posed that aim to make the formation of a performa
and those where a single-time will suffice.
While there are a number of post-analysis and d

nosis tools that can assist with identifying performa
constraints such as identifying bottlenecks[8] or visu-
alizing communication patterns[9], many are aime
at resolving problems with the application rather t
characterizing and understanding an application’s
formance behavior. This subtle difference in purp
differentiates this work from standard post-anal
tools. Rather than highlighting hotspots of commu
cation in a particular application for example, this w
might focus on the fact that communication in a p
ticular code region is proportionally lower than tha
a previous run of the application. In a sense, the
cus is on identifying key differences and, in particu
idiosyncratic behaviors.

The approach described in this paper uses a
bination of static and dynamic call-graph analysi
identity regions of code that are sensitive to data
and scalability variations in order to considerably
duce the time-to-model. It provides a compact view
multiple executions of an application using color c
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to draw attention to “areas of interest”. It can also gen-
erate graphical illustrations of differences between exe-
cution traces to rapidly identify code blocks that require
attention. In addition, events can match communication
patterns against a library of predefinedtemplates that
attempt to identify common parallelization strategies.
The current implementation is a prototype: it is envis-
aged that other methods of visualization could be em-
ployed to summarize more detailed performance char-
acteristics “at a glance”. Reducing the physical screen
estate that represents key data could permit rapid large-
scale analysis. Similar visualization techniques have
been applied to code maintenance[10].

The paper is organized as follows: Section2 de-
scribes an approach that leads to a performance model
and identifies areas where tools can assist. Section3
introduces a tracing tool that can create call-graphs
for post-analysis using source-code instrumentation. In
Section4, methods that use multi-trace visualizations
to highlight key application differences are described.
Their use is illustrated with examples run on large-scale
parallel codes. Section5summarizes the features of the
approach. Conclusions and future work are discussed
in Section6.
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tions, and the portion of workload assigned to a partic-
ular processor. To obtain an initial behavioral pattern
for these features, the preliminary stages of model for-
mulation include executing the application with fixed
input data sizes and a varying number of processing
elements (PE) to observe changes in the overall exe-
cution time and resource consumption. This can reveal
basic information, a simple example being whether the
program scales weakly or strongly. Likewise, similar
observations can be taken by fixing the number of PEs
and varying the data-set sizes.

Instrumentation and profiling are subsequently used
to obtain a deeper understanding of the code. From a
performance-perspective, it is usually unnecessary to
understand the “meaning” of the data types used, how-
ever the “representation” of the data types can have
a large impact on the code’s performance. Identify-
ing the dimensionality of the data and the workload
per grid-point also has a large impact on the achiev-
able performance. A number of these performance fea-
tures can be observed by highlighting the changes be-
tween different “executions” of the application in var-
ious configurations. Changes may be observed in the
communication-to-computation ratio, the communica-
tion matrix (which processors are involved in commu-
nication), and also in scaling effects. Moreover, ob-
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. Identification of performance characteristics
rom multiple executions

The performance modeling work at Los Alamos
ional Laboratory (LANL) has been primarily focus
n applications representative of the ASCI (Acce
ted Strategic Computing Initiative) workload wh
nalytical techniques are employed to develop en
pplication models for the large-scale ASCI compu
esources. This differs from a number of other per
ance initiatives that tend to focus on smaller ap

ations in distributed computing environments suc
11]. The Los Alamos models are used most pro
ently to explore the scaling behavior of applicati
n existing and speculative future architectures.

The approach to developing a performance m
s based upon a detailed understanding of the pe

ance effects that occur when changes to the sy
nd application configuration are applied. Features
ffect performance include: the data decomposi

he frequency and locality of boundary commun
ion, the frequency and impact of the collective op
served changes can provide insight into the type
method of domain decomposition such as messag
changes as in the case of SAGE[12] (an adaptive mes
hydro code) due to its 1D decomposition, and into
ferences in neighboring processors as in the ca
Tycho [13] (a deterministic radiation transport co
due to the use of an unstructured mesh.

The problem partitioning and related messaging
vealed through instrumentation typically provide
strong indication of the arrangement of the appl
tion’s data, which can be confirmed by static c
analysis of the relevant regions. Generating static
graphs can assist with identifying the functional dep
dencies of the code sections and dynamic call-gr
(through the use of traces collected at run-time)
illustrate the flow of execution. In addition, compar
the relative number of issued instructions for a g
subroutine in different runs/iterations can highlight
impact of configuration change on calculation and c
putational areas.

The overall objective of these activities is to
tain a model based on timings of sequential elem
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parameterized by expressions that are subject to in-
put parameters and differing levels of parallelism. By
identifying messaging, data placement and computa-
tional sensitivity to configuration and data-set sizes, it
is possible to locate regions of the code that can be
described by a single timing (for a given architecture)
or by an analytical expression that captures the com-
putation/communication characteristics with respect to
the input parameters. While the modeling approach is
based on understanding the application’s behavior, it
is evident that much of the initial work is based upon
observing the performance effects of input and con-
figuration variation. This leads to the construction of
an initial model, which is subsequently refined until a
satisfactory level of fidelity (predicted execution time
versus measured time) is obtained.

Even semi-automated approaches that use micro-
benchmarking typically require manual tuning to im-
prove predictive accuracy and this inevitably dictates
running the application in various configurations and
analyzing the results. It is, therefore, reasonable to uti-
lize tools that assist in the early stages of performance
model development. A suitable tool can assist with in-
strumentation and call-graph generation producing a
visualization of the key differences to indicate “areas of
interest”. This can significantly reduce the overhead of
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calls subroutine init the instrumentation library is in
the context of bothmain andinit, and any events
that occur are associated with both of these contexts.
This property is used to reduce the storage space of
the event list as it is dynamically constructed in mem-
ory. The event-list is written to file when the applica-
tion exits, although it is possible to allow on-line pag-
ing. The trace-file can then be processed by subsequent
utilities.

During application initialization, the instrumenta-
tion library is disabled which results in virtually no
overhead. An explicitPROFILE-START call is re-
quired to enable the library and store the context
changes as necessary. In addition to context changes,
MPI calls are logged as events using the profiling MPI
(PMPI) interface, which utilizes the profile library, and
can assist with identifying the communication patterns
that occur. The relevant parameters (source, destina-
tion, collective, size, type) are stored as part of an MPI
event. Currently, only 20 MPI calls are wrapped which
covered our internal test cases; it is reasonably straight-
forward to include further commands or to employ a
third party tool such as VampirTrace[9]. A PROFILE-
STOP can be used to stop the process prematurely (oth-
erwise it occurs on application exit). Each processor
logs its own events separately and the logs are written
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the performance modeling process, allowing a pe
mance specialist to focus on a subset of the applic
rather than all of it.

3. Dynamic call-graph collection

In order to assist the instrumentation, an autom
source-to-source translation tool is used to insert
filing statements into the code where a subroutin
entered and exited. This tool currently supports
tran, parsing the source and inserting profiling s
ments but could be extended for further language
erage. The application is linked against a lightwe
profiling library that stores the “events” in a dynam
page-based list whenever a subroutine is called
minimize memory overhead, each event records a
ited amount of information which includes: a sour
file identifier, a source-line number, and a token
denote whether a “context” has been entered in
exited from. As with nested subroutines, contexts
grouped so that when, for instance, subroutine m
to different files. This might include local scratch d
or a centralized node over a file sharing mechanis
required.

The process allows rapid instrumentation of
source code with a subsequent compile, link and
ecute sequence to obtain the required tracing info
tion. The events that appear are essentially a call-g
of the program and can be subjected to a wide varie
post analysis tools. This includes the post proces
multi-trace analysis tools described here that atte
to identify key performance features.

Inevitably, the application incurs overhead throu
use of the tracing library although this overhead is k
minimal, consisting of a few array operations per p
file call to store events. Depending upon the page
periodic memory allocation is required which will inc
a further performance penalty. It is important to n
that the purpose of this task is to identify functio
characteristics, and so the timing issues are secon
in the analysis. Furthermore, with judicious use of
profile start and stop functions, it is possible to i
late a single iteration of the code in order to red
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the size of the trace files, or create a set of trace files
for each iteration and processor. This was used when
applying these tools to the Los Alamos Parallel Ocean
Program (POP)[14] in order to compare different it-
erations of the application. Where trace file size is not
an issue, particular iterations can be extracted during
post-processing.

In a similar manner to Paradyn[15], the instrumen-
tation library utilizes the concept of inclusive and ex-
clusive metrics, where inclusive sums a metric for a
context and all its children, while exclusive returns
the metric for a context without its children. Current
recordable metrics include context duration and the
number of issued instructions (if PAPI[16] is avail-
able). The context duration should be used cautiously
as timing anomalies are possible when using a pro-
filing library as well as experimental variations that
are inevitable with very short timings. However, the
issued instruction count can be more telling about a
context’s behavior with regard to computational over-
head. In isolation, these quantities do not provide much
information, unless the purpose of the instrumentation
activity is to identify contexts with heavy computa-
tional requirements. It is in multi-trace analysis, where
one context is compared with another (with a differ-
ent configuration, or from another processor or itera-
t ons
c rk-
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4. Multi-trace visualization

There are a number of visualization tools that can
assist with understanding an application’s runtime be-
havior. For MPI applications, Vampir provides a large
suite of views that provide a good level of detail. It
is essentially possible to “playback” the application to
determine where communication occurs, which pro-
cessors are involved and where blocks of computation
occur. The tools developed as part of this work provide
similar capabilities, although they are geared towards
the accompanying tracing library and focus on high-
lighting features that readily facilitate performance-
model generation. These tools are now explored in
detail.

4.1. Context-chain graph

The trace fragment depicted inFig. 1, taken from a
run of the Parallel Ocean Code (POP), simply graphs
the application flow (in common with a number of ex-
isting profilers). However, capabilities exist in the im-
plementation that allows a performance modeler to fo-
cus on a particular section of code. In this fragment,
the extract is from the main iteration in POP. The first
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ion), that the relative difference in issued instructi
an reveal workload differences. With a fixed wo
oad size, and varying processor count, it is poss
o use this technique to identify where the bulk of
ub-grid computation is occurring, as one can rea
bly postulate that such contexts will be sensitive
onfiguration change of this nature.

Fig. 1. Trace fragment for ite
two columns list the instantaneous time and accu
lated time within a context, respectively. The third c
umn lists the relative inclusive-percentage of issue
structions, and the remaining columns detail the
texts. The bracketed numbers after each context r
to source line ranges. This example illustrates th
significant amount of computational time is spen
thebaroclinic context.

0, PE #0 of an execution of POP.
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Fig. 2. Fragment of the event-count view of the communication in POP.

Each event in this view can be consolidated to pro-
vide a compact representation of a program’s function-
ality. It is possible to filter out detail such as inFig. 2
where only communication events are included in the
trace fragment. In this view, the first column denotes
the event count with the context-chain on the right ex-
tracted from the context profile.

This representation is useful to indicate the mix of
activities in the application such as the ratio of collec-
tives and point-to-point communications. As this can
have a significant impact on the scalability of a code, it
is useful to ascertain the frequency and location of such
operations. It can also be used to identify behaviors that
are unexpected, such as irregular or unusual commu-
nications. For example, the POP application utilizes a
solver subroutine that tests for convergence of a partic-
ular variable. This leads to an “unexpected” number of
MPI-send operations – 97 in this case. Again, identify-
ing unusual behavior can assist the performance spe-
cialist in analyzing a particular piece of code in more
detail.

The event-count view also lends itself to the analyt-
ical expressions that typically constitute a performance
model. Capturing the cost of performance characteris-
tics, as opposed to the functional operations, reduces
the complexity of the resultant models, as they do not
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application executions. So-called multi-trace analysis
highlights the side-effects of running the application
with different processors, input data and/or workload
size. The tool developed in this work offers a num-
ber of facilities to help with such analysis; the first
is the ability to place two or more traces “side-by-
side”, highlighting the difference between code densi-
ties (number of instructions in a subroutine) for differ-
ing application-runs (presumably with different input-
data sizes). This approach is useful when attempting
to identify performance-effected regions of code, as a
performance modeler can determine if a code region in
an application is worth analyzing further or whether a
single timing can be taken.

After parsing an event file, as generated by the in-
strumentation library described in Section3, a post-
processor reconstructs a complete call-graph of the ap-
plication and compares it with subsequently loaded
event files. The implementation utilizes an algorithm
that searches for the largest similar code-region within
the main code body in a similar manner to the “diff”
command-line utility (although the matching is neither
textual nor exact).

Context entries in the trace files are deemed similar
if the call-graph nodes are equal and that the instruc-
tion counts are within a given sensitivity. Communica-
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require temporal structure. The event-count view
flects this as it is essentially unimportant when the
is made: just how many times, how often, and any
information. Inevitably, there are applications wh
the interactions may not follow this pattern but in m
situations similar communications (such as boun
exchanges) can invariably be grouped together in
single, simpler expression.

4.2. Context comparison views

Where the approach becomes much more po
ful is where comparisons are made between diffe
tion entries are deemed similar based on rules tha
be configured by the user, in one mode the call-g
nodes, the type (send, receive, gather, etc.) and all
munication parameters (source, destination, and
are all equal. A second mode allows slightly more fl
ibility: the call-graph and type must be equal, but va
tions are permitted in the source and receiver ident
The mode is selectable and depends on whether
parisons are being made between processors, itera
or configurations.

The visualization screenshot inFig. 3 compare
three traces from PE #0, #1 and #2 for a single
ation. Each trace file contains approximately 66,
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Fig. 3. Multi-trace visualization of three different processors from a single iteration of POP.

events and shaded regions (blue in color) highlight
differences. In this particular example, the highlight-
ing indicates the differences between blocks of bound-
ary communication in otherwise similar code regions.
These differences are straightforward – that is source
and destination pairs are not equal. Using this view
(multi-processor), for this application, it is possible to
determine that the workload is spread evenly across
the sub-grid with regular differences in the communi-
cation matrix. While it is not clear from the screenshot,
the communication events are arranged within their re-
spective appropriate contexts so that it straightforward
to identify which code blocks are performing the mes-
saging. It also provides indicators on the type of de-
composition used in the application, namely that the
logical 2D processor mesh is probably cyclic other-
wise one might expect that PE #0 would have a fewer
communications than PE #1 at the boundaries.

When event-files are loaded, they can be linked to-
gether using a control panel to associate relevant view-
options. The tool permits some filtering which allows

the user to view MPI collectives, point-to-point func-
tions and normal context (subroutines). A ‘hotspot’
slider allows the user to highlight portions of the trace
where the inclusive number of instructions as a percent-
age of the overall total, is above the threshold percent-
age. The ‘sensitivity’ slider allows the user to set the
extent to which the number of issued instructions in the
first trace can deviate from the second. In tests, it was
found that a value of approximately 5% highlighted re-
gions of the call graph that altered significantly due to
a change in configuration.

The comparison algorithm attempts to identify the
largest similar run within the call-graph and creates
links to the next trace. Where calls exist in the second
trace but not the first they are highlighted using a fur-
ther color and the link cursor (sited between the trace
columns) is used to indicate where they should be in the
second trace. Similarly, where calls exist that are not in
the second trace, they are highlighted a further color,
and again link to where they are expected. A common
color (blue) indicates sections that exist in both traces
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but are different (i.e. exceed a given threshold). The
tool allows a chain of comparisons to be established,
so that trace 1 is compared with 2, 2 with 3 and so on.
These chains do not have to be compared sequentially
– PEs #0 and #2 inFig. 3 could be compared directly
if required.

4.3. Call-chain discrepancy view

Alongside the multi-trace view, it is possible to take
one or more trace files and arrange the output so that
common elements of the call-chain are “aligned”. This
process can produce concise graphic views that sum-
marize major blocks of the application. An example is
shown inFig. 4, a comparison is made between small-
scale executions of POP: one on a 4× 4 (16 processor)
arrangement and one on a single processor run. The
flow of the code is from the top left to bottom right
corner, scanning across each line. Each pixel repre-
sents an individual context event, where black denotes
that the context-flow is significantly different across
traces (such as call-chain variation, or a difference in
source/destination PE identifiers), and grey indicates
that the chain is identical. The white space between
these color cues is a by-product of the visualization
algorithm attempting to align black and grey blocks al-
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communication. Moving the mouse over a few of these
points rapidly reveals the repetitious nature of this par-
ticular difference and clearly demonstrates where the
communication is occurring.

Displaying traces at this density allows an observer
to rapidly distinguish areas of interest and then “drill
down” to view the relevant code. In this case, the striped
block relates to a group of boundary exchanges where
the processor source/destination pairs are different (the
sequential execution clearly has a different boundary
exchange pattern than the 4× 4 case which performs
inter-processor exchanges).

As well as applying this technique to different
processor configurations, the tool can be used to
compare different processors in the same execution
run to identify patterns indicative of the data de-
composition. It is also possible to consider indi-
vidual iterations, where call-chain analysis can re-
veal distinct phases in the application such as the
wave-front processes in Sweep3D—a code that per-
forms deterministicSN transport on structural meshes
[17]. While this process is useful for identifying “bi-
nary” differences, aligned events can be further an-
alyzed to discover changes to workload, messaging
size and/or computational impact. The instrumenta-
tion library retains an issued instruction counter, which

ution
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lowing the user to more readily identify related ar
of the call graph.

The algorithm itself functions by analyzing t
aligned call graphs and constructing sequential ch
of matching and non-matching contexts. It scans f
top-left to bottom-right, line breaking when the pre
ous chain sequences differs from the current sequ
This results in each horizontal “scan line” conta
ing related activity and, where the application cont
loops, grouping this activity vertically.

The advantage of this approach is that many t
sands of events are compactly represented using
vidual pixels (in this figure, each pixel has been sc
up for clarity). When a call-chain discrepancy is
tected (black), the filling algorithm checks whether
“similar” discrepancies have occurred on the same
If so, the line continues from left to right; otherwise
algorithm moves onto the next line, from the left. T
groups blocks of common calls together making it
ier to pick out particular features.

In Fig. 4, one difference has been highlighted,
the cursor, revealing a difference in the MPIIRECV
can be used to compare differences across exec
traces.

4.4. Computational difference view

The graphical view inFig. 5 applies to the sam
traces asFig. 4; however, communication events ha
been removed and the relative difference betwee
sued instructions is illustrated as a greyscale.

In this figure, black indicates the largest differen
in computation with the greyscales ranging up to t
The initial patterns relate to matrices in the solvers
ing primed with data. With a fixed problem size, this
evitably reduces the workload per-processor as th
count is scaled up. This is evident in the computatio
plot. The diagonal pattern at the top ofFig. 5reveals a
regular pattern in the computation that directly rela
to the change in workload. As before, it is possibl
hone in on a particular event and see the differe
in more detail. InFig. 5, the solvers context ha
been identified as having computational sensitivit
the start-up configuration.
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Fig. 4. Communication differences between two POP executions for a 1× 1 and 4× 4 processor configuration.

4.5. Communication matrix

Using a communication matrix view, it is possible
to identify key features regarding some of the perfor-
mance features of the POP application, for instance
where boundary communications are performed, sen-
sitivity to scaling, computational differences and indi-
cators on the type of domain decomposition employed
by the application. Indeed, it is possible to utilize the
communication events to hypothesize how the appli-
cation is representing key data structures. Examination
of the communication matrix, a 2D grid of source to
destination processor elements can reveal a number of
key application behavioral characteristics. Symmetri-

cal patterns are indicative of two-way sub-grid com-
munication, and a nearest neighbor indicates 1D data
decomposition for example.

Using 16 traces from a 4× 4 processor run of the
POP application produces the communication matrix
illustrated inFig. 6. The matrix reveals that most PEs
communicates with four others and that the communi-
cation is two-way due to the symmetrical nature of the
plot. This pattern is typical of a 2D decomposition with
boundary wrap-round in theX-dimension.

Using the output from the communication call-
chains as a basis, the tool developed in this work
attempts to identify the decomposition structure us-
ing a set of popular communication “templates”. This

proce d table
texts
Fig. 5. Differences in issued instructions between a 1× 1 and 4× 4
that includes a “difference” tag, relative difference between con
ssor executions of POP. The highlighted area is a three columne
and the context identifier.
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Fig. 6. Plot from a 4× 4 execution of POP.

process can be used to rapidly determine whether an
application utilizes “standard” decomposition arrange-
ments, and, when used in combination with the call-
graph comparisons, can be used to determine the work-
load distribution and application data structures.

The templates are defined as a 2D matrixT repre-
senting point-to-point communications between each
source processori (vertical axis) and each destination
processorj (horizontal axis). Each template element,
Tij, takes a value of{−1, 1} whereTij = 1 if the com-
munication from processori to processorj is a part of
the communication pattern represented by the template,
andTij =−1 if it is not. An application communication
matrix C is formed from an analysis of the trace file
output, whereCij is set to 1 if communication occurred
between processorsi andj, or −1 otherwise.

The trace files can be evaluated in their entirety (as
in the case of POP) or portions can be analyzed if the
application has distinct phases where aggregated mes-
saging can affect the level of detail revealed. Unfor-
tunately, it is application dependent at what level the
appropriate amount of detail will be revealed and so ob-
taining the effective traces that provide useful informa-
tion relies, to some extent, on the skill and experience
of the performance modeler. However, as this process
is usually conducted by the modeler, it does not place

poor
traces
t con-

em-
races
ng a

Table 1
Communication template matches

Px × Py Bi/Uni Configuration

1× 16 BI NOWRAP = 0.82
1× 16 BI WRAP = 0.75
2× 8 BI NOWRAP = 0.70
2× 8 BI WRAP = 0.69
4× 4 BI NOWRAP = 0.94
4× 4 BI WRAP = 1.00 (EXACT)
8× 2 BI NOWRAP = 0.77
8× 2 BI WRAP = 0.75

16× 1 BI NOWRAP = 0.82
16× 1 BI WRAP = 0.75

convolution(1) that provides a weighted match, where
p is the number of processors. It is possible to run the
comparison process with an arbitrary number

m = 1

p2

p−1∑

i=0

p−1∑

j=0

T ij · Cij (1)

of trace files (or processor counts).
When the communication pattern is regular, this ap-

proach is able discern application behavior, as illus-
trated inTable 1. This illustrates the matching output
when several of the pre-defined templates and using the
16 trace files from a 4× 4 run of POP. Each of the tem-
plates in this example assumed a 2D communication
pattern of different logical processor arrangements (Px

andPy).
In this example, the configuration of POP with

a 4× 4 processor array using bi-directional wrapped
boundary exchanges was successfully identified. While
the non-wrapped 4× 4 arrangement was not an ex-
act match, the relatively high score suggests that these
communication templates can reveal certain similari-
ties (in this case, the PE configuration) without match-
ing a particular communication strategy.

r to
g-
d
for

ine
set
additional constraints on the approach. Indeed,
matches may suggest an inadequate number of
or a trace file that has been truncated and does no
tain enough detail to form an exact match.

To start the comparison process, a library of t
plates are loaded or generated dynamically. The t
are compared with each template in the library usi
5. Performance feature summary

Together the tools allow a performance modele
rapidly profile a code, run it under different confi
urations (such as on a 4× 4 processor network, an
on an 8× 8 network) and then analyze the traces
particular performance characteristics (seeTable 2).
In addition, the traces can be analyzed to determ
the data decomposition by comparison with a
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Table 2
Example of the identifiable performance features

Performance character-
istic

Tool assistance

Calculate impact due to
data-set changes

Highlight relative difference in
instruction counts in similar regions
of the call-graph
Highlight relative difference in
message sizes between PEs

Data-placement
differences due to
variation in PE count

Highlight changes in communication
patterns (source, destination), as
topology is changed, to account for
configuration

Functional differences
in application itera-
tions

Highlight new/deleted regions in the
call-graph and differences in
event-count views

of example communication templates as described in
Section4.

Effective visualizations are used to illustrate key
performance differences so that in the case of moving
from one processor arrangement to another for exam-
ple, it is likely that the communication patterns will
be different and, if the application scales weakly, large
differences in the computation sections and message
sizes. These visual cues aim to provide an effective
summarized view of the program’s dynamic operation.
Once alerted to a particular region of code that appears
sensitive to a particular change it is possible to direct
attention to that part of the program that can ultimately
assist in constructing the performance model.

6. Conclusions and future work

The approach described in this paper utilizes dy-
namic trace files and a multi-trace visualization tool
to highlight areas of interest when input parameters,
data sets and resource configurations are modified. By
focusing on the areas of a code that are sensitive to
configuration and input data, overhead is removed in
terms of isolating the critical regions that govern the
performance characteristic of an application.

ac-
t rfor-
m d
i cess
b that

can focus the attention of the performance-specialist
to relevant regions of code. The compact “pixel” view
permits a rapid overview of the application’s behav-
ior that can be annotated in a manner that highlights
performance-effected contexts.

Future developments of this approach include devel-
oping the visualization tool to utilize the Vampir trace
facility that is widely utilized in parallel performance
studies. Further work includes experiments with more
exotic forms of visualization, using color and locality
to obtain very compact views of multiple trace files re-
lating to a number of difference performance scenarios.
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